矩阵微积分

在网上看到有人贴了如下求导公式:

Y = A * X --> DY/DX = A'

Y = X * A --> DY/DX = A

Y = A' * X * B --> DY/DX = A * B'

Y = A' * X' * B --> DY/DX = B * A'

于是把以前学过的矩阵求导部分整理一下:

1. 矩阵Y 对标量x 求导:

相当于每个元素求导数后转置一下,注意M×N 矩阵求导后变成N×M 了

Y = [y(ij)] --> dY/dx = [dy(ji)/dx]

2. 标量y 对列向量X 求导:

注意与上面不同,这次括号内是求偏导,不转置,对N×1向量求导后还是N×1向量

y = f(x1,x2,..,xn) --> dy/dX = (Dy/Dx1,Dy/Dx2,..,Dy/Dxn)'

3. 行向量Y' 对列向量X 求导:

注意1×M 向量对N×1向量求导后是N×M 矩阵。

将Y 的每一列对X 求偏导,将各列构成一个矩阵。

重要结论:

dX'/dX = I

d(AX)'/dX = A'

4. 列向量Y 对行向量X’求导:

转化为行向量Y’对列向量X 的导数,然后转置。

注意M×1向量对1×N 向量求导结果为M×N 矩阵。

dY/dX' = (dY'/dX)'

5. 向量积对列向量X 求导运算法则:

注意与标量求导有点不同。

d(UV')/dX = (dU/dX)V' + U(dV'/dX)

d(U'V)/dX = (dU'/dX)V + (dV'/dX)U'

重要结论:

d(X'A)/dX = (dX'/dX)A + (dA/dX)X' = IA + 0X' = A

d(AX)/dX' = (d(X'A')/dX)' = (A')' = A

d(X'AX)/dX = (dX'/dX)AX + (d(AX)'/dX)X = AX + A'X

6. 矩阵Y 对列向量X 求导:

将Y 对X 的每一个分量求偏导,构成一个超向量。

注意该向量的每一个元素都是一个矩阵。

7. 矩阵积对列向量求导法则:

d(uV)/dX = (du/dX)V + u(dV/dX)

d(UV)/dX = (dU/dX)V + U(dV/dX)

重要结论:

d(X'A)/dX = (dX'/dX)A + X'(dA/dX) = IA + X'0 = A

8. 标量y 对矩阵X 的导数:

类似标量y 对列向量X 的导数,

把y 对每个X 的元素求偏导,不用转置。

dy/dX = [ Dy/Dx(ij) ]

重要结论:

y = U'XV = ΣΣu(i)x(ij)v(j) 于是 dy/dX = [u(i)v(j)] = UV'

y = U'X'XU 则 dy/dX = 2XUU'

y = (XU-V)'(XU-V) 则 dy/dX = d(U'X'XU - 2V'XU + V'V)/dX = 2XUU' - 2VU' + 0 = 2(XU-V)U'

9. 矩阵Y 对矩阵X 的导数:

将Y 的每个元素对X 求导,然后排在一起形成超级矩阵。

10. 乘积的导数

d(f*g)/dx=(df'/dx)g+(dg/dx)f'

结论

d(x'Ax)=(d(x'')/dx)Ax+(d(Ax)/dx)(x'')=Ax+A'x (注意:'' 是表示两次转置

Matrix Reference Manual

Matrix Calculus

Go to: Introduction , Notation , Index Contents

Notation

∙ Derivatives of Linear Products

∙ Derivatives of Quadratic Products ∙

Notation

∙ d/dx (y ) is a vector whose (i) element is dy(i)/dx d/dx (y) is a vector whose (i) element is dy/dx(i) d/dx (y T ) is a matrix whose (i,j) element is dy(j)/dx(i) d/dx (Y ) is a matrix whose (i,j) element is dy(i,j)/dx d/dX (y) is a matrix whose (i,j) element is dy/dx(i,j)

Note that the Hermitian transpose is not used because complex conjugates are not analytic.

In the expressions below matrices and vectors A , B , C do not depend on X .

Derivatives of Linear Products

∙ d/dx (AYB ) =A * d/dx (Y ) * B o d/dx (Ay ) =A * d/dx (y ) d/dx (x T A ) =A T o d/dx (x ) =I T T o d/dx (x a ) = d/dx (a x ) = a d/dX (a T Xb ) = ab T T T T T o d/dX (a Xa ) = d/dX (a X a ) = aa d/dX (a T X T b ) = ba T d/dx (YZ ) =Y * d/dx (Z ) + d/dx (Y ) * Z Derivatives of Quadratic Products

d/dx (Ax +b ) T C (D x+e ) = A T C(Dx+e) + D T C T (Ax+b)

T T o d/dx (x Cx ) = (C +C ) x

T [C: symmetric]: d/dx (x Cx ) = 2Cx

T d/dx (x x ) = 2x

T T T o d/dx (Ax +b ) (D x+e ) = A (Dx+e) + D (Ax+b)

T T d/dx (Ax +b ) (A x+b ) = 2A (Ax+b)

T T o [C: symmetric]: d/dx (Ax +b ) C (A x+b ) = 2A C(Ax+b)

T T T T ∙ d/dX (a X Xb ) = X(ab + ba)

T T T o d/dX (a X Xa ) = 2Xaa

T T T T T ∙ d/dX (a X CXb ) = C Xab + CXba

T T T T o d/dX (a X CXa ) = (C + C)Xaa

T T T o [C :Symmetric ] d/dX (a X CXa ) = 2CXaa

T T T ∙ d/dX ((Xa+b)C(Xa+b)) = (C+C)(Xa+b)a ∙

Derivatives of Cubic Products

∙ d/dx (x T Axx T ) = (A+AT )xx T +xT AxI

Derivatives of Inverses

∙ d/dx (Y -1) = -Y -1d/dx (Y ) Y -1

Derivative of Trace

Note: matrix dimensions must result in an n*n argument for tr(). ∙

∙ d/dX (tr(X)) = I d/dX (tr(Xk ) ) =k (Xk -1) T d/dX (tr(AXk ) ) = SUM r=0:k-1(Xr AX k-r -1) T d/dX (tr(AX-1B) ) = -(X-1BAX -1) T -1-1-T T -T o d/dX (tr(AX) ) =d/dX (tr(XA) ) = -X A X d/dX (tr(AT XB T )) = d/dX (tr(BXT A )) = AB

o d/dX (tr(XAT ) ) = d/dX (tr(AT X) ) =d/dX (tr(XT A) ) = d/dX (tr(AXT ) ) = A

d/dX (tr(AXBXT ) ) = AT XB T + AXB

T T o d/dX (tr(XAX) ) = X(A+A)

T T T o d/dX (tr(XAX) ) = X(A+A)

T T o d/dX (tr(AXX) ) = (A+A)X

d/dX (tr(AXBX)) = AT X T B T + B T X T A T

[C:symmetric ] d/dX (tr((XT CX) -1A ) = d/dX (tr(A (XT CX) -1) = -(CX(XT CX) -1)(A+AT )(XT CX) -1

[B,C:symmetric ] d/dX (tr((XT CX) -1(XT BX) ) = d/dX (tr( (XT BX)(XT CX) -1) = -2(CX(XT CX) -1)X T BX(XT CX) -1 + 2BX(XT CX) -1

∙ ∙ ∙ ∙ ∙ ∙

Derivative of Determinant

Note: matrix dimensions must result in an n*n argument for det(). ∙

∙ d/dX (det(X)) = d/dX (det(XT ) ) = det(X)*X-T -T o d/dX (det(AXB)) = det(AXB)*X -T o d/dX (ln(det(AXB))) = X d/dX (det(Xk ) ) = k *det(Xk )*X-T k -T o d/dX (ln(det(X) )) = k X [Real ] d/dX (det(XT CX) ) = det(XT CX)*(C+CT )X(XT CX) -1 T T T -1o [C : Real,Symmetric ] d/dX (det(XCX) ) = 2det(XCX)* CX(XCX) [C : Real,Symmetricc ] d/dX (ln(det(XT CX)) ) = 2CX(XT CX) -1 Jacobian

If y is a function of x , then d y T /dx is the Jacobian matrix of y with respect to x .

Its determinant, |d y T /dx |, is the Jacobian of y with respect to x and represents the ratio of the hyper-volumes d y and d x . The Jacobian occurs when changing variables in an integration:

Integral(f(y )d y )=Integral(f(y (x )) |d y T /d x | dx ).

Hessian matrix

If f is a function of x then the symmetric matrix d2f/dx 2 = d /dx T (df/dx ) is the Hessian matrix of f(x ). A value of x for which df/dx = 0 corresponds to a minimum, maximum or saddle point according to whether the Hessian is positive definite, negative definite or indefinite.

d 2/dx 2 (a T x ) = 0

22T T T T ∙ d /dx (Ax +b ) C (D x+e ) = A CD + D C A

22T T o d /dx (x Cx ) = C +C

22T d /dx (x x ) = 2I

22T T T o d /dx (Ax +b ) (D x+e ) = A D + D A

22T T d /dx (Ax +b ) (A x+b ) = 2A A

22T T o [C: symmetric]: d /dx (Ax +b ) C (A x+b ) = 2A CA ∙

在网上看到有人贴了如下求导公式:

Y = A * X --> DY/DX = A'

Y = X * A --> DY/DX = A

Y = A' * X * B --> DY/DX = A * B'

Y = A' * X' * B --> DY/DX = B * A'

于是把以前学过的矩阵求导部分整理一下:

1. 矩阵Y 对标量x 求导:

相当于每个元素求导数后转置一下,注意M×N 矩阵求导后变成N×M 了

Y = [y(ij)] --> dY/dx = [dy(ji)/dx]

2. 标量y 对列向量X 求导:

注意与上面不同,这次括号内是求偏导,不转置,对N×1向量求导后还是N×1向量

y = f(x1,x2,..,xn) --> dy/dX = (Dy/Dx1,Dy/Dx2,..,Dy/Dxn)'

3. 行向量Y' 对列向量X 求导:

注意1×M 向量对N×1向量求导后是N×M 矩阵。

将Y 的每一列对X 求偏导,将各列构成一个矩阵。

重要结论:

dX'/dX = I

d(AX)'/dX = A'

4. 列向量Y 对行向量X’求导:

转化为行向量Y’对列向量X 的导数,然后转置。

注意M×1向量对1×N 向量求导结果为M×N 矩阵。

dY/dX' = (dY'/dX)'

5. 向量积对列向量X 求导运算法则:

注意与标量求导有点不同。

d(UV')/dX = (dU/dX)V' + U(dV'/dX)

d(U'V)/dX = (dU'/dX)V + (dV'/dX)U'

重要结论:

d(X'A)/dX = (dX'/dX)A + (dA/dX)X' = IA + 0X' = A

d(AX)/dX' = (d(X'A')/dX)' = (A')' = A

d(X'AX)/dX = (dX'/dX)AX + (d(AX)'/dX)X = AX + A'X

6. 矩阵Y 对列向量X 求导:

将Y 对X 的每一个分量求偏导,构成一个超向量。

注意该向量的每一个元素都是一个矩阵。

7. 矩阵积对列向量求导法则:

d(uV)/dX = (du/dX)V + u(dV/dX)

d(UV)/dX = (dU/dX)V + U(dV/dX)

重要结论:

d(X'A)/dX = (dX'/dX)A + X'(dA/dX) = IA + X'0 = A

8. 标量y 对矩阵X 的导数:

类似标量y 对列向量X 的导数,

把y 对每个X 的元素求偏导,不用转置。

dy/dX = [ Dy/Dx(ij) ]

重要结论:

y = U'XV = ΣΣu(i)x(ij)v(j) 于是 dy/dX = [u(i)v(j)] = UV'

y = U'X'XU 则 dy/dX = 2XUU'

y = (XU-V)'(XU-V) 则 dy/dX = d(U'X'XU - 2V'XU + V'V)/dX = 2XUU' - 2VU' + 0 = 2(XU-V)U'

9. 矩阵Y 对矩阵X 的导数:

将Y 的每个元素对X 求导,然后排在一起形成超级矩阵。

10. 乘积的导数

d(f*g)/dx=(df'/dx)g+(dg/dx)f'

结论

d(x'Ax)=(d(x'')/dx)Ax+(d(Ax)/dx)(x'')=Ax+A'x (注意:'' 是表示两次转置

Matrix Reference Manual

Matrix Calculus

Go to: Introduction , Notation , Index Contents

Notation

∙ Derivatives of Linear Products

∙ Derivatives of Quadratic Products ∙

Notation

∙ d/dx (y ) is a vector whose (i) element is dy(i)/dx d/dx (y) is a vector whose (i) element is dy/dx(i) d/dx (y T ) is a matrix whose (i,j) element is dy(j)/dx(i) d/dx (Y ) is a matrix whose (i,j) element is dy(i,j)/dx d/dX (y) is a matrix whose (i,j) element is dy/dx(i,j)

Note that the Hermitian transpose is not used because complex conjugates are not analytic.

In the expressions below matrices and vectors A , B , C do not depend on X .

Derivatives of Linear Products

∙ d/dx (AYB ) =A * d/dx (Y ) * B o d/dx (Ay ) =A * d/dx (y ) d/dx (x T A ) =A T o d/dx (x ) =I T T o d/dx (x a ) = d/dx (a x ) = a d/dX (a T Xb ) = ab T T T T T o d/dX (a Xa ) = d/dX (a X a ) = aa d/dX (a T X T b ) = ba T d/dx (YZ ) =Y * d/dx (Z ) + d/dx (Y ) * Z Derivatives of Quadratic Products

d/dx (Ax +b ) T C (D x+e ) = A T C(Dx+e) + D T C T (Ax+b)

T T o d/dx (x Cx ) = (C +C ) x

T [C: symmetric]: d/dx (x Cx ) = 2Cx

T d/dx (x x ) = 2x

T T T o d/dx (Ax +b ) (D x+e ) = A (Dx+e) + D (Ax+b)

T T d/dx (Ax +b ) (A x+b ) = 2A (Ax+b)

T T o [C: symmetric]: d/dx (Ax +b ) C (A x+b ) = 2A C(Ax+b)

T T T T ∙ d/dX (a X Xb ) = X(ab + ba)

T T T o d/dX (a X Xa ) = 2Xaa

T T T T T ∙ d/dX (a X CXb ) = C Xab + CXba

T T T T o d/dX (a X CXa ) = (C + C)Xaa

T T T o [C :Symmetric ] d/dX (a X CXa ) = 2CXaa

T T T ∙ d/dX ((Xa+b)C(Xa+b)) = (C+C)(Xa+b)a ∙

Derivatives of Cubic Products

∙ d/dx (x T Axx T ) = (A+AT )xx T +xT AxI

Derivatives of Inverses

∙ d/dx (Y -1) = -Y -1d/dx (Y ) Y -1

Derivative of Trace

Note: matrix dimensions must result in an n*n argument for tr(). ∙

∙ d/dX (tr(X)) = I d/dX (tr(Xk ) ) =k (Xk -1) T d/dX (tr(AXk ) ) = SUM r=0:k-1(Xr AX k-r -1) T d/dX (tr(AX-1B) ) = -(X-1BAX -1) T -1-1-T T -T o d/dX (tr(AX) ) =d/dX (tr(XA) ) = -X A X d/dX (tr(AT XB T )) = d/dX (tr(BXT A )) = AB

o d/dX (tr(XAT ) ) = d/dX (tr(AT X) ) =d/dX (tr(XT A) ) = d/dX (tr(AXT ) ) = A

d/dX (tr(AXBXT ) ) = AT XB T + AXB

T T o d/dX (tr(XAX) ) = X(A+A)

T T T o d/dX (tr(XAX) ) = X(A+A)

T T o d/dX (tr(AXX) ) = (A+A)X

d/dX (tr(AXBX)) = AT X T B T + B T X T A T

[C:symmetric ] d/dX (tr((XT CX) -1A ) = d/dX (tr(A (XT CX) -1) = -(CX(XT CX) -1)(A+AT )(XT CX) -1

[B,C:symmetric ] d/dX (tr((XT CX) -1(XT BX) ) = d/dX (tr( (XT BX)(XT CX) -1) = -2(CX(XT CX) -1)X T BX(XT CX) -1 + 2BX(XT CX) -1

∙ ∙ ∙ ∙ ∙ ∙

Derivative of Determinant

Note: matrix dimensions must result in an n*n argument for det(). ∙

∙ d/dX (det(X)) = d/dX (det(XT ) ) = det(X)*X-T -T o d/dX (det(AXB)) = det(AXB)*X -T o d/dX (ln(det(AXB))) = X d/dX (det(Xk ) ) = k *det(Xk )*X-T k -T o d/dX (ln(det(X) )) = k X [Real ] d/dX (det(XT CX) ) = det(XT CX)*(C+CT )X(XT CX) -1 T T T -1o [C : Real,Symmetric ] d/dX (det(XCX) ) = 2det(XCX)* CX(XCX) [C : Real,Symmetricc ] d/dX (ln(det(XT CX)) ) = 2CX(XT CX) -1 Jacobian

If y is a function of x , then d y T /dx is the Jacobian matrix of y with respect to x .

Its determinant, |d y T /dx |, is the Jacobian of y with respect to x and represents the ratio of the hyper-volumes d y and d x . The Jacobian occurs when changing variables in an integration:

Integral(f(y )d y )=Integral(f(y (x )) |d y T /d x | dx ).

Hessian matrix

If f is a function of x then the symmetric matrix d2f/dx 2 = d /dx T (df/dx ) is the Hessian matrix of f(x ). A value of x for which df/dx = 0 corresponds to a minimum, maximum or saddle point according to whether the Hessian is positive definite, negative definite or indefinite.

d 2/dx 2 (a T x ) = 0

22T T T T ∙ d /dx (Ax +b ) C (D x+e ) = A CD + D C A

22T T o d /dx (x Cx ) = C +C

22T d /dx (x x ) = 2I

22T T T o d /dx (Ax +b ) (D x+e ) = A D + D A

22T T d /dx (Ax +b ) (A x+b ) = 2A A

22T T o [C: symmetric]: d /dx (Ax +b ) C (A x+b ) = 2A CA ∙


    相关文章

    华南科技大学硕士研究生入学考试

    华南科技大学硕士研究生入学考试<数学>(含高等数学.线性代数) 考试大纲 一.函数.极限.连续 考试内容 函数的概念及表示法 函数的有界性.单调性.周期性和奇偶性 复合函数.反函数.分段函数和隐函数 基本初等函数的性质及其图形 ...

    数学三考研大纲

    考研数学三考试大纲 姓名:曹辉 手机号:[1**********] 考试科目:微积分.线性代数.概率论与数理统计 考试形式和试卷结构 一.试卷满分及考试时间 试卷满分为150分,考试时间为180分钟. 二.答题方式 答题方式为闭卷.笔试. ...

    四川省专升本考试大纲

    四川省普通高等学校专升本 <高等数学>考试大纲 (文史类.财经类.管理类.农医类) 一.总要求 考生应该理解或了解<高等数学>中函数.极限.连续.一元函数微分学.一元函数积分学.多元函数微积分学.无穷级数.微分方程和 ...

    物流定量分析方法大纲

    第一部分 大纲说明 一.课程的性质与任务 <物流管理定量分析方法>是中央广播电视大学物流管理专业的一门必修的重要基础课.它是为培养适应四个现代化需要的.符合社会主义市场经济要求的大专应用型经济管理人才服务的. 通过本课程的学习, ...

    考研数学三考试大纲 全国统考

    考研数学三大纲 编辑 考试科目 微积分.线性代数.概率论与数理统计 1试题结构 考试形式 试卷内容结构 试卷题型结构 2考试内容 微积分 线性代数 概率统计 试题结构编辑 考试形式 1.试卷满分及考试时间 试卷满分为150分,考试时间为18 ...

    考研数学一常考题型及重点汇总

    第二篇 高等数学 第一章 函数.极限.连续 思考的鱼点拨 "函数.极限.连续"这一部分的概念及运算是高等数学的基础,它们是每年必考的内容之一,数学一中本部分分数平均每年约占高等数学部分的10%. 本章的考题类型及知识点大 ...

    数学分析在高等代数中的某些应用

    第17卷第3期 河南教育学院学报(自然科学版) V01.17No.3200 8年9月JournalofHenanInstituteof Education(NaturalScience) Sep.2008 数学分析在高等代数中的某些应用 王 ...

    数学考点总结

    高数高频考点 1. 判断函数的连续性及间断点的分类: 2. 未定式极限的计算.无穷小比较以及极限的局部逆问题: 3. 各类函数(包括复合函数.幂指函数.隐函数.参数方程.变上限函数)的求导: 4. 导数定义及几何意义相关题目: 5. 利用函 ...

    有限元的弱形式

    PDE 弱形式介绍 GJ :看到一个介绍COMSOL 解决物理问题弱形式的文档,感觉很牛啊,通过COMSOL Multiphysics 的弱形式用户界面来求解更多更复杂的问题,这绝对是物理研究的利器啊!而且貌似COMSOL 是唯一可以直接使 ...