三角形垂心的性质

三角形垂心的性质总结

山西省原平市第一中学 任所怀

三角形的垂心定理:在三角形ABC中,求证:它的三条高交于一点。

证明:如图:作BE

于点E,CFAB于点F,且BE交CF于点H,连接AH并

延长交BC于点D。现在我们只要证明ADBC即可。

因为CFAB,BE

所以 四边形BFEC为圆内接四边形。 四边形AFHE为圆内接四边形。 所以∠FAH=∠FEH=∠FEB=∠FCB 由∠FAH=∠FCB得

四边形AFDC为圆内接四边形 所以∠AFC=∠ADC=90° 即ADBC。

点评:以上证明主要应用了平面几何中的四点共圆的判定与性质。 三角形垂心的性质定理1:

锐角三角形的垂心是以三个垂足为顶点的三角形的内心。

如上图,在三角形ABC中,AD、CF、BE分别为BC、AB、AC上的高,D、F、E分别为垂足,H为三角形ABC的垂心。求证:H为三角形DFE的内心。

证明:要证H为三角形DFE的内心,只需证明HF、HE、HD分别平分∠DFE、∠FED、∠EDF。

同样我们还是利用四点共圆的判定与性质来证明。

由BCEF四点共圆得∠EFC=∠EBC (都是弧CE所对的圆周角)

由HFBD四点共圆得∠HFD=∠HBD=∠EBC (都是弧HD所对的圆周角)

所以∠EFH=∠HFD 所以 HF平分∠EFD。 同理 HE平分∠FED;HD平分∠FDE 所以H为三角形DFE的内心。

点评:以上两个问题都用到了四点共圆。因为在这个图形中共可得到6个圆内接四边形,你不妨找一找。

三角形垂心的向量表示:

在心。

中,若点O满足

,则点O为三角形ABC的垂

证明:由同理OB

,则点O为垂心。

,所以。

三角形垂心性质定理2:

若三角形的三个顶点都在函数证明:设点O(x,y)

的图象上,则它的垂心也在这个函数图象上。

的垂心,则上面的向量表示得

为的三个顶点都在函

数的图象上,所以

因为,所以

所以

所以

(1)

同理:由得 (2)

联立(1)(2)两式,就可解出

显然有垂心O在函数的图象上。

点评:此题恰当地应用了垂心的向量表示,把几何问题转化成了代数问题,完美体现了数形结合的数学思想。

(2005年全国一卷理科)

的外接圆的圆心为O,两条边上的高的交点为H

,则实数m =

分析:H显然为

的垂心,我们可取特殊情况来猜想m的值。于是我取

直角三角形,角A为直角,此时H点与A点重合,且O为BC

的中点(如图所示)。此时

,于是猜想

m=1.

而对于一般情况,上面问题,我们不妨称之为三角形的垂心性质定理3:

的外心为O,垂心为H,则

证明:作出

的外接圆和外接圆直径AD,连接BD,CD。

因为直径所对圆周角为直角,所以有 因为H为

的垂心,所以

所以HC//BD,BH//DC,所以四边形BDCH为平行四边形,所以

因为所以

,且

点评:这条性质联系了三角形的外心与垂心,所得向量关系也相当简洁。以此为背景出高考题,也确实体现了命题者深厚的知识功底。

三角形垂心性质定理3:

三角形任一顶点到垂心的距离,等于外心到对边的距离的2倍。 即:

的外心为O,垂心为H,D为BC中点,则AH=2OD。

证明:因为D为BC中点 所以由性质2知:

所以AH=2OD。

点评:性质定理3,也可看做是性质定理2的推论。 三角形垂心性质定理4:

锐角三角形的垂心到三顶点的距离之和等于其内切圆与外接圆半径之和的2倍。 分析:应用上面的性质定理3,上面这一结论可改为

锐角三角形的外接圆与内切圆径之和等于外心到三角形三边距离之和。

即:

如图在锐角

中,O为外心,D,E,F分别为三边的中点。设外接圆半径

为R,内切圆半径为r,则OD+OE+OF=R+r.

证明:在锐角

中,O为外心,D,E,F分别为三边的中点,则

OF

所以有

=

中角A,B,C所对边的长分别为a,b,c.

=2C

在圆O中,弧AB

所对的圆心角又因OA=OB,

OF

,所以

OF=OA*cosC=RcosC。

同理OD=R*cosB, OE=R*cosA

所以

而由三角形内切圆的性质知:所以

这个式子就指出了内切圆半径与外接圆半径的关系。

而要证OD+OE+OF=R+r,

需证:

RcosA+RcosB+RcosC=R+即需证

需证(b+c)cosA+(a+c)cosB+(a+b)cosC=a+b+c

而对上式的证明我们可采用正弦定理,化角为边, 即需证:

sinBcosA+sinCcosA+sinAcosB+sinCcosB+sinAcosC+sinBcosC=sinA+sinB+sinC 需证:sin(A+B)+sin(A+C)+sin(B+C)=sinA+sinB+sinC

而因为A+B+C= 所以sin(A+B)+sin(A+C)+sin(B+C)=sinA+sinB+sinC显然成立 所以命题得证。

点评:此题的证明充分联系我们初高中的大量知识,真是做到了“八方联系,浑然一体”(孙维刚老师语)。通过这样的一个问题,我们的数学能力将大大提高。

三角形垂心性质定理5:

H、A、B、C四点中任一点是其余三点为顶点的三角形的垂心(并称这样的四点为一—垂心组)。

此定理的证明相对简单,读者不妨自已试试。在此提出这个性质,主要是看到这里存在的一种广义对称性,即四个点中每一点都可为垂心。这个结论进一步提醒我们要经常换个角度相问题。

三角形垂心性质定理6:

H为△ABC的垂心,则 △ABC,△ABH,△BCH,△ACH的外接圆是等圆。 分析:要证两圆为等圆,只要证明它们的半径(或直径)相等就可以啦。而这两圆都是三角形的外接圆,于是我们就想到了正弦定理。

的直径为

因为HD

的直径为,

所以 四边形BEHD是圆内接四边形

所以 所以sinB=sin

所以

所以

=

的外接圆为等圆。

同理△ABC,△ABH,△BCH,△ACH的外接圆是等圆。 证明略。

点评:该题的证明过程中,应用到了性质1中的圆内接四边形性质和正弦定理。这也正是在提示我们要注意八方联系。

以上我对与三角形垂心有关的性质做了一些总结,当然也难免还有其它性质,我还没有发现。我写文章的目的,也就是在于启发读者经常进行总结,在总结中我们才会有新的发现和创新。

作者简介:任所怀,山西省原平市第一中学一级教师。1996年毕业于山西师范大学数学系,在中学任教15年,一直从事高中数学教学与研究工作。

三角形垂心的性质总结

山西省原平市第一中学 任所怀

三角形的垂心定理:在三角形ABC中,求证:它的三条高交于一点。

证明:如图:作BE

于点E,CFAB于点F,且BE交CF于点H,连接AH并

延长交BC于点D。现在我们只要证明ADBC即可。

因为CFAB,BE

所以 四边形BFEC为圆内接四边形。 四边形AFHE为圆内接四边形。 所以∠FAH=∠FEH=∠FEB=∠FCB 由∠FAH=∠FCB得

四边形AFDC为圆内接四边形 所以∠AFC=∠ADC=90° 即ADBC。

点评:以上证明主要应用了平面几何中的四点共圆的判定与性质。 三角形垂心的性质定理1:

锐角三角形的垂心是以三个垂足为顶点的三角形的内心。

如上图,在三角形ABC中,AD、CF、BE分别为BC、AB、AC上的高,D、F、E分别为垂足,H为三角形ABC的垂心。求证:H为三角形DFE的内心。

证明:要证H为三角形DFE的内心,只需证明HF、HE、HD分别平分∠DFE、∠FED、∠EDF。

同样我们还是利用四点共圆的判定与性质来证明。

由BCEF四点共圆得∠EFC=∠EBC (都是弧CE所对的圆周角)

由HFBD四点共圆得∠HFD=∠HBD=∠EBC (都是弧HD所对的圆周角)

所以∠EFH=∠HFD 所以 HF平分∠EFD。 同理 HE平分∠FED;HD平分∠FDE 所以H为三角形DFE的内心。

点评:以上两个问题都用到了四点共圆。因为在这个图形中共可得到6个圆内接四边形,你不妨找一找。

三角形垂心的向量表示:

在心。

中,若点O满足

,则点O为三角形ABC的垂

证明:由同理OB

,则点O为垂心。

,所以。

三角形垂心性质定理2:

若三角形的三个顶点都在函数证明:设点O(x,y)

的图象上,则它的垂心也在这个函数图象上。

的垂心,则上面的向量表示得

为的三个顶点都在函

数的图象上,所以

因为,所以

所以

所以

(1)

同理:由得 (2)

联立(1)(2)两式,就可解出

显然有垂心O在函数的图象上。

点评:此题恰当地应用了垂心的向量表示,把几何问题转化成了代数问题,完美体现了数形结合的数学思想。

(2005年全国一卷理科)

的外接圆的圆心为O,两条边上的高的交点为H

,则实数m =

分析:H显然为

的垂心,我们可取特殊情况来猜想m的值。于是我取

直角三角形,角A为直角,此时H点与A点重合,且O为BC

的中点(如图所示)。此时

,于是猜想

m=1.

而对于一般情况,上面问题,我们不妨称之为三角形的垂心性质定理3:

的外心为O,垂心为H,则

证明:作出

的外接圆和外接圆直径AD,连接BD,CD。

因为直径所对圆周角为直角,所以有 因为H为

的垂心,所以

所以HC//BD,BH//DC,所以四边形BDCH为平行四边形,所以

因为所以

,且

点评:这条性质联系了三角形的外心与垂心,所得向量关系也相当简洁。以此为背景出高考题,也确实体现了命题者深厚的知识功底。

三角形垂心性质定理3:

三角形任一顶点到垂心的距离,等于外心到对边的距离的2倍。 即:

的外心为O,垂心为H,D为BC中点,则AH=2OD。

证明:因为D为BC中点 所以由性质2知:

所以AH=2OD。

点评:性质定理3,也可看做是性质定理2的推论。 三角形垂心性质定理4:

锐角三角形的垂心到三顶点的距离之和等于其内切圆与外接圆半径之和的2倍。 分析:应用上面的性质定理3,上面这一结论可改为

锐角三角形的外接圆与内切圆径之和等于外心到三角形三边距离之和。

即:

如图在锐角

中,O为外心,D,E,F分别为三边的中点。设外接圆半径

为R,内切圆半径为r,则OD+OE+OF=R+r.

证明:在锐角

中,O为外心,D,E,F分别为三边的中点,则

OF

所以有

=

中角A,B,C所对边的长分别为a,b,c.

=2C

在圆O中,弧AB

所对的圆心角又因OA=OB,

OF

,所以

OF=OA*cosC=RcosC。

同理OD=R*cosB, OE=R*cosA

所以

而由三角形内切圆的性质知:所以

这个式子就指出了内切圆半径与外接圆半径的关系。

而要证OD+OE+OF=R+r,

需证:

RcosA+RcosB+RcosC=R+即需证

需证(b+c)cosA+(a+c)cosB+(a+b)cosC=a+b+c

而对上式的证明我们可采用正弦定理,化角为边, 即需证:

sinBcosA+sinCcosA+sinAcosB+sinCcosB+sinAcosC+sinBcosC=sinA+sinB+sinC 需证:sin(A+B)+sin(A+C)+sin(B+C)=sinA+sinB+sinC

而因为A+B+C= 所以sin(A+B)+sin(A+C)+sin(B+C)=sinA+sinB+sinC显然成立 所以命题得证。

点评:此题的证明充分联系我们初高中的大量知识,真是做到了“八方联系,浑然一体”(孙维刚老师语)。通过这样的一个问题,我们的数学能力将大大提高。

三角形垂心性质定理5:

H、A、B、C四点中任一点是其余三点为顶点的三角形的垂心(并称这样的四点为一—垂心组)。

此定理的证明相对简单,读者不妨自已试试。在此提出这个性质,主要是看到这里存在的一种广义对称性,即四个点中每一点都可为垂心。这个结论进一步提醒我们要经常换个角度相问题。

三角形垂心性质定理6:

H为△ABC的垂心,则 △ABC,△ABH,△BCH,△ACH的外接圆是等圆。 分析:要证两圆为等圆,只要证明它们的半径(或直径)相等就可以啦。而这两圆都是三角形的外接圆,于是我们就想到了正弦定理。

的直径为

因为HD

的直径为,

所以 四边形BEHD是圆内接四边形

所以 所以sinB=sin

所以

所以

=

的外接圆为等圆。

同理△ABC,△ABH,△BCH,△ACH的外接圆是等圆。 证明略。

点评:该题的证明过程中,应用到了性质1中的圆内接四边形性质和正弦定理。这也正是在提示我们要注意八方联系。

以上我对与三角形垂心有关的性质做了一些总结,当然也难免还有其它性质,我还没有发现。我写文章的目的,也就是在于启发读者经常进行总结,在总结中我们才会有新的发现和创新。

作者简介:任所怀,山西省原平市第一中学一级教师。1996年毕业于山西师范大学数学系,在中学任教15年,一直从事高中数学教学与研究工作。


    相关文章

    说课相似三角形的性质

    "相似三角形的性质"说课设计 遂平县沈寨乡第一初级中学 陈志彬 义务教育阶段的数学课程应突出体现基础性.普及性和发展性,使数学教育面向全体学生,实现: --人人学有价值的数学: --人人都能获得必需的数学: --不同的人 ...

    [直角三角形的性质和判定]教学设计

    梅田中学(本部)课例展示资料(数学组)-- <直角三角形的性质和判定>教学设计 时 间:2009-11-9 教学目标 知识与技能:1理解并掌握直角三角形的判定定理和斜边上的中线性质定理 2 能应用直角三角形的判定与性质,解决有关 ...

    等腰三角形的性质说课稿

    <等腰三角形的性质>说课稿 一.设计理念 <数学课程标准>指出:"数学是人们对客观世界定性把握和定量刻画,逐渐抽象概括,形成方法和理论,并进行广泛应用的过程","有效的数学学习活动不能单 ...

    专题复习:等腰(边)三角形与直角三角形

    专题 等腰(边)三角形与直角三角形 ☞解读考点 ☞2年中考 [2015年题组] 1.(2015来宾)下列各组线段中,能够组成直角三角形的一组是( ) A.1 ,2,3 B.2,3,4 C.4,5,6 D.1 [答案]D. [解析] 试题分析 ...

    三角形外角的性质及外角和教案

    第9章 多边形 9.1.2(2)<三角形的外角性质及外角和> 教学设计 华东师范大学出版社 初中数学(2012版) 筠连县第三中学 唐世举 [教学目标] 1.再次理解什么是三角形的外角,正确辨别一外角的相邻内角和不相邻内角 2. ...

    2015-2016学年度上学期期中考试八年级数学试题

    2015-2016学年度上学期期中考试八年级数学试题 一.选择题(共11小题) 1.如图所示的图形中,属于多边形的有( )个. A .3个 B .4个 C .5个 D .6个 2.在一个直角三角形中,有一个锐角等于60°,则另一个锐角的度数 ...

    [三角形的中位线]教学案

    <三角形的中位线> 教学案 课程分析: 本课的作用和学习本课的意义) (本课的作用和学习本课的意义 课程分析: 本课的作用和学习本课的意义) ( 本节课是苏教版数学八年级上册第三章第 6 节第 1 课时的内容.在此之前,学 生已 ...

    知识结构图

    八年级数学青岛版上册知识框图 全等三角形 全等三角形 全等三角形的概念 全等三角形的性质:对应边相等,对应角相等 怎样判定三角形全等:SAS ASA AAS SSS 尺规作图 图形的轴对称 图形的轴对称 轴对称的概念 两个图形关于直线成轴对 ...

    相似三角形性质教案

    相似三角形的性质(2) 教学目标 1.经历探索相似三角形性质的过程,并会运用相似三角形的性质解决有关的问题. 2.通过探索相似三角形性质的过程,渗透逻辑推理的方法,引导学生从直观发现向自觉说理过渡,从而获得发现问题.解决问题的经验,发展了学 ...